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ABSTRACT

This paper contains an analysis of the complex set of periodic solutions
which may occur in a fluid filled vessel of rectangular cross section. A
previous analysis by Verma and Keller (2] 5found only simple eigenvalues for
the linearized problem. It is shown herein that at critical values of the
vessel aspect ratio double eigenvalues occur. Eight non-linear solution
branches are emitted from these double eigenvalues. The solutions along the
various branches are derived, and the results displayed graphically. It is
shown that irregular waves occur along some of these branches.

In an interesting development, Bauer, Keller, and Reiss (4], in their
analysis of shell buckling, showed that the splitting of multiple eigenvalues
may lead to secondary bifurcation. This theory is applied to the non-linear
standing wave problem herein, and it is shown that secondary bifurcation does
occur in the neighborhood of the double eigenvalue. A perturbation method is
used to find the secondary bifurcation points, and the solutions along the
secondary branches, in the neighborhood of their respective branch points, are
found.

The neighborhood around the critical aspect ratios is substantial,
suggesting that secondary branching may occur in a variety of vessels with
rectangular cross section. This theor offers an explanation of the irregular

waves often observed in the/sloshing -of fluid in a rectangular vessel.

AMS (MOS) Subject Classifications: 76B15, 35B10, 35B32, 35R35
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SIGNIFICANCE AND EXPLANATION

This paper contains an analysis of the complex set of periodic solutions

which may occur in a fluid filled vessel of rectangular cross section. A

previous analysis by Verma and Keller [2] found only simple eigenvalues for

the linearized problem. It is shown herein that at critical values of the

vessel aspect ratio double eigenvalues occur. Eight non-linear solution

branches are emitted from these double eigenvalues. The solutions along the

various branches are derived, and the results displayed grapahically. It is

shown that irregular waves occur along some of these branches.

In an interesting development, Bauer, Keller, and Reiss [4], in their

analysis of shell buckling, showed that the splitting of multiple eigenvalues

may lead to secondary bifurcation. This theory is applied to the non-linear

standing wave problem herein, and it is shown that secondary bifurcation does

occur in the neighborhood of the double eigenvalue. A perturbation method is

used to find the secondary bifurcation points, and the solutions along the

secondary branches, in the neighborhood of their respective branch points, are

found.

The neighborhood around the critical aspect ratios is substantial,

suggesting that secondary branching may occur in a variety of vessels with

rectangular cross section. This theory offers an explanation of the irregular

waves often observed in the "sloshing" of fluid in a rectangular vessel.

The respons~.bility for the wording and views expresed in this descriptive
summary lies with MRC, and not with the author of this report.
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ON THE SECONDARY BIFURCATION OF THREE
DIMENSIONAL STANDING WAVES

Thomas J. Bridges

1. Introduction

In a rectangular basin with vertical sides, it is well known that, if the amplitude

is very small, the wave field in the basin will be a set of elementary cosine waves in the

two horizontal dimensions with a particular natural frequency, which is merely a function

of the basin geometry and gravity (viscosity, and surface tension, etc., being

neglected). This is the classical linear standing wave solution [I, Lamb, p. 364]. As

the amplitude of the wave field is increased, the number of solutions and their type is

increased dramatically.

Considering a cuboidal container, the relevant parameters are the dimensionless

depth, 6, and the aspect ratio, &, of the horizontal cross section. As the amplitude

of the wave field is increased, these two parameters govern the type and multiplicity of

solutions which arise. However, there is two distinct types of secondary branching which

take place in this problem. One is due to the parameter 6 and is only weakly dependent

r on C (in fact, this bifurcation involves branching away from standing waves to other

types of waves (sometimes travelling waves)), and the other is due to the parameter

and is only weakly dependent on 8. In both cases the other parameter affects the

secondary bifurcation, and the interaction can be complex, but the two phenomena remain

when the other parameter is excluded. This enables the two secondary bifurcations to be

isolated and studied individually. The bifurcation which is due to 6 and remains when

the flow-field is two-dimensional will be considered in a separate study. The purpose of

this paper is to study the multiple and secondary bifurcations which arise due to the

Sponsored by the United States Army under Contract No. DAG29-80-C-0041. This material is
based upon work supported by the National Science Foundation under Grant No. DMS-8210950,
Mod. 1.
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effect of , the basin aspect ratio. A rectangular vessel with vertical sides and

infinite depth is adopted to illustrate this phenomena.

The lowest natural frequency, of such a basin, and the solutions in the neighborhood

of this point have been found by Verma and Keller [2]. These solutions were found using a

perturbation procedure in the amplitude, C, and they determined the effect on the

natural frequency, of the amplitude, to 0( 3). However, by concentrating on a single

mode, this analysis missed the complex interactions which may take place between some

modes and the secondary bifurcation which also occurs on some primary branches. In

Section 2, an analysis, similar to Verma and Keller, is used to determine the complete set

of primary bifurcation points and the solutions along the simple primary branches. This

analysis shows that each of the primary bifurcation points occurs at o0 - X/2 , where0 m,n

X "- w(m
2 +2 n2n) 1/2 (1.1)

3, n

where m and n are the mode numbers, respectively, in the x- and z-directions. For

particular combinations of , and n, multiple eigenvalues, of multiplicity two,

will occur. For example, if I = (a square basin), every pair (m,n), m * n is a

double eigenvalue. If -1/2, then Xt, 4 " X2,2 ' etc. In fact, for E equal to any

rational fraction there is a set of double eigenvalues. The physical reason for the

appearance of double eigenvalues is quite obvious. In a square vessel, for example, the

linear sinusoidal wave field with 2-wavelengths in the x-direction and 1-wavelength in the

z-direction will share the same natural frequency with a wave form which has 1-wavelength

in the x-direction and 2 wavelengths in the a-direction. Therefore, although the

eigenvalue is double, the eigenfunctions are linearly independent. This is, in fact, a

ramification of spatial symmetry, a subject which is discussed in a more general context

by Sattinger [3].

In Section 3, an analysis of these double primary bifurcation points is performed.

It is found that from each of these points there extends 8 branches (4 of these branches

correspond to -e, and are reflections of the +c branches). Of the four +E branches

-2-
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two correspond to the two linearly independent eigenfunctions taken separately, and the

other two correspond to mixed modes involving both of the eigenfunctions. These mixed

modes combine to produce irregular surface wave fields which for some cases appear to be

spatially random to the uninitiated observer. Figures depicting solutions of this type

are given in Section 3.

In an intersting discovery, Bauer, Keller, and Reiss [4] observed that as a multiple

bifurcation point is "split" (by varying an auxiliary parameter (in this case &)) into

primary bifurcation points a secondary bifurcation may occur. At the double eigenvalue,

which arises in the standing wave problem, there are four +c branches. Upon splitting

this point, two of these branches become the simple primary branches. Due to continuous

dependence, the other two solutions cannot simply vanish when E is perturbed away from

&0 , the location of the double eigenvalue, and therefore they slowly depart by creeping

up the split primary branches in a manner which differs from problem to problem. Bauer,

Keller, and Reiss developed a perturbation method which enabled them to analyze this

phenomena in the buckling of thin shells. Subsequently, this theory has been successfully

applied by Mahar and Matkowsky (5] to a model biochemical reaction problem, Matkowsky,

Putnick, and Reiss (6] to the buckling of rectangular plates, and has been extended to the

bifurcation from triple eigenvalues, which results in secondary and tertiary bifurcation,

by Reiss [7].

In Section 4 the theory of Bauer, Keller, and Reiss is used to show that secondary

bifurcation occurs in the neighborhood of the double points which arise in the problem of

three-dimensional standing waves. The secondary bifurcation points are found and the

solutions along them are derived. It is found that mode jumping occurs in the shift from

the primary to the secondary branches and the complex interaction of the two modes in the

neighborhood of the secondary bifurcation point produces irregular wave forms.

These mixed-mode solutions offer an explanation of some of the irregularities that

are often observed in experiments. For example, in the experiments of Taylor (8], on the

highest two dimensional standing waves, irregular three-dimensional "crown waves" were

-3-
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observed forming on top of the two-dimensional standing 
waves. His experimental basin had

an aspect ratio of 1 - 2.0, and the crown waves look like mixed-mode solutions discussed

herein.
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2. Primary Bifurcation from Simple Eigenvalues

The fluid in the basin is taken to be inviscid, irrotational, and absent of surface

tension. The problem can then be expressed in terms of a potential function and the wave

height. Length scales are rendered dimensionless by 2a, the tank length (see Figure 1),

with the exception of the z-direction where 2b, the tank width is used, and 9, the

acceleration of gravity, and the frequency arc used for the time scales. The governinq

equations and boundary conditions are

2* 2 2*

ax2 al2 az 2

for - 2 4 x (1/2, - z 2 , y (xzt) (2.1)

*

0 at x 
1
/2  (2.2a)

ax

(2.2b)

IL + 0 as y + (2.2c)ay

W 3b +2 [(1 )2 + (.)2 + E2(.*)2] + fl - 0 on y - (2.3)
at 2

w an an + az E2 z ay on Y n (2.4)
-t a

* = n - 0 is a solution for all values of E. This is the basic state. Periodic

solutions, of period n', which bifurcate from this state are sought. The potential

function and the wave height are assumed to have an expansion of the following form,

* 2
(x,y,z,t;C) = e* 1(x,y,t;E) + C 2 (x,y,z,t;E) + . . . (2.5a)

-5-
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Figure 1. Definitional figure showing coordinate system and
vessel geomnetry.
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n *(x,z,t;&;c) = 1(xzt&) + C2n 2 (x,z,t,&) + (2.Sb)

W (U e) = a0 (E) + £al(1) + C
2a21) + a . . (2.Sc)

and e, a measure of the wave amplitude, is chosen to be proportional to the first term

in (2.Sb). Before substitution of (2.5) into the boundary value problem, the free surface

boundary conditions (2.3) and (2.4) are expanded in a Taylor series about y = 0,

F(x z~t;&;C)j _ F~ +. - +_If 2F, +(." lr* y-O Ty' 2 2y(.6
y=0 y-0 ay y-0

Substitution of (2.5) into (2.1) - (2.4), the use of (2.6), and the setting to zero o. the

terms proportional to each power of £ results in the following sequence of boundary

value problems,

2 2 2

-.--+-...J + E2_L-L - o
ax2  ay2  az 2

in - x -, - z - y 0 2.7)2 2 2 2( , -~ (

0 at z t 1/2 (2.8b)ax

"0 as y*- (2.8c)a y

C = R at y 0 (2.9)

0 an1  a~j

a 0 . at y 0 (2.10)

for j = 1, 2, ... RI = S1 - 0, and I and Sj for j > I are functions of term of

previous order only, and are given in Appendix I. Since (2.7) - (2.10) for j > I are

inhomogeneous eigenvalue problems, they are soluable if and only if they satisfy the

Fredholm alternative. The alternative necessary for this and the later developments is

given in Appendix II.

%"-"."-.-,'.".'..'.............................................. . %. "...
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The solution of (2.7) - (2.10) for j - 1 is

ill coo amx coo Bn; sin t (2.11)

S-1 n , n
y

0 e Cosa co z cos t (2.12)

where Ur = w, B n nw, x x 1 / 2 , z + 1/2 , and

a02 (a ,"la2 + 
t 2 n2) 1/ 2  

(2.13)

At the next order, the solvability condition requires that a 0, then

2 (B21 + C21 coo 2t) coo 2amx

+ (B22 + C2 2 co 2t) coo 28nz" (2.14)

+ (B23 + C coo 2t) coo 2ax coo 28;

and

2ay 2Mny
02 [A2 0 + A 2 1e coo 2a x + e22•  coo 20n;] sin 2t (2.15)

where

A20 a " /8 (2.16a)

2 2
n

A21 2 (2. 16b)
4a0 (U * 20

2
m

"22 = (2.16c)

4a 2a

2
U

B = - (2.17a)21 802

,'..'..800
2

B 22- (2.17b)
S0

-8-

~ ~ ~ ~~ ~ ~ ~.. . . . . . . . . . . .- . . . . .." " " . , . , . . " . , ", , , ' . . . . " . " , . " . - ' . , , . ' ' . , , , . , " - " , "



2

B 23 - 0 (2. 17c)

C2 1  - 20A2 1  (o4 + C2 B 2 (2.17d)

. . ( 0 0 4 + (1 
2 )

8 oo

C '--2orA - 0 -m (2. 17e)22 0 22 8002

C23 - - (02/8 (2.17f)

After some manipulation, the solvability condition at the next order results in an

expression for a2, the amplitude correction to the natural frequency,

ao5 3a4+4o 4 4 4 a4

+ + On1 2.18)283 2 c0 4 0 ( 2 0 2 m ) 4 r00 ( 2 0 2 _ E n )

By choosing a B 1 - and - l/L, this result is in agreement with that found bym n

Verma and Keller for the first mode when the depth is infinite. The expression (2.18) is

negative definite and this can be shown by recasting (2.18) as

- 4 00 10 + 2 9En008 24002 4 3 a 
4

= 40
2 04 232o (2o - En)

-40010 + 2a0 0 8 + 2E 4 n4002 + 3amE4On
4

+ 1 2. 19)
0 [ 

320 42002 - a)

With no loss of generality, choose B = ra where r e [0,-]. Then (2.19) can be
n m

expressed as

3202 = [2/1 r(1 - 2(1 + r 2
)

2 ) + r(3 + 2(1 + r2)2)]

2 a2
m 0 (1 + r2)(21 + - r)

+2/1 + r2(r 4 - 2(1 + r 2) 2
) + (3r 4 

+ 2(1 + r 2) 2 ]  
2.19a)

(1 + r2)(2 ' + r -1)

-9-
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For subcritical bifurcation it is required that

22)2) 2)2)2/1 + r2(1 - 2(1 + r2)
2 ) + r(3 + 2(0 + r )2 ) ( 0 (2.20a)

and

2/- 2r 2(1 + r 2 ) 2 ) + (3r" 2(1 + r2)2)4 0 (2.20b)

for any r c [0,-]. After some algebraic manipulation (2.20a) can be recast as

2 4 6 8 10
- [4 + 3r + 40r + 92r + 64r + 12r ] - 0 (2.21a)

and (2.20b) can be recast as

- [2 + 12p + 8p
2 

+ 4p
3 

+ 5p
4 

+ 2p
5 ] ( 0 (2.21b)

where p = 1+ r2 - 1, which satisfies p £ [0,-] when r c [0,-). The pair (2.21a,b)

proves the conjecture: the bifurcation from all the simple eigenvaluea is subcritical.

The natural frequency of the standing wave decreases as the amplitude increases. There is

* also the interesting feature that 1021 increases with increasing m and n. Therefore
2

*the magnitude of the slope in the w -e plane decreases with increasing mode number

resulting in an intersection of the higher mode branches with the lower mode branches.

Figure 2 is a plot of the natural frequency as a function of amplitude for F - .25

and m, n ranging over 1, 2, and 3. The dashed lines correspond to modes with equal

indices (m = n). This is an almost two dimensional field and the 9 modes are coalescing

. around the 3 two-dimensional values. In Figure 3, for the same range of m and n, and

= 1., the modes are plotted. Here they are more spread out with the mode intersections

being quite obvious. In Figure 4, a typical non-linear wave on a branch bifurcating from a

simple eigenvalue, is plotted. The vessel is square in cross-section ( 1 - 1), e - 0.15,

and m = n 1 1. This is often referred to as the "slosh" mode. Figure 5 shows a time

*- . series for the wave height in the left front corner (x - z - 0), of the tank depicted in

Figure 4. Figure 4 is a "snapshot" corresponding to =2- * k, k - 0,1,2,.
2w 4

-10-
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0 1 2 3 4

o.Co

Figure 2. Bifurcation diagram f.r simple eigenvalues at .25,
and mode numbers (M.Y.) ranging over 1, 2, and 3. The
dashed lines correajond to branches with equal indices
(m =n).
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0.4

0.3

0.2

0.1

0.0
0 1 2 3 4

Figure 3. Bifurcation diagram for simple eigenvalues at ~=11
and mode numbers (m,n) ranging over 1, 2, and 3. The
dashed lines correspond t) branches with equal indices
(m =n).
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Figure 4. Spatial variation of the solution for =1, m = ni=1

and E =0.15 at a fixed time: - - + k, k = 0, 1, 2,27r 4
This is often referred to as the "slosh" mode.

I 0.25

7) 0.00

-0.251I
o 1 2 3 4

t/2ir
* Figure 5. Time series of the wave height, in the left front corner

(x =z 0) of the vessel in Figure 4. The parameters are
=1.0, m n =1, and c =0.15.
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In summary, the primary bifurcation points are at a0 - (M 2 + 2 n 21 /4 with

m = 1, 2, ... and n = 1, 2, ... and the solutions on the primary branches, for values of

C, m, and n such that the eigenvalues are simple, as c + 0, are

* = E + 2 2 0(c3 ) (2.22)

n* 
= 

En 1 + C2n2 + O(
3
) (2.23)

* = a10 + C202 + O(
)  (2.24)

14
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3. Primary Bifurcation From the Double Eigenvalues

% At critical values of the aspect ratio of the vessel cross-section, a set of double

eigenvalues will occur. When I I there is a double eigenvalue for any pair (m,n)

such that m # n, and when t =1/2 (m,n) = (1,4) and (m,n) - (2,2) is a double

eigenvalue, ad infinitum. For & equal to any rational fraction there is a set of double

eigenvalues. It is expected that the nature of the solutions will be similar for the

various critical values of E. To elaborate this phenomena, an analysis of the solutions

emitted from the set of double eigenvalues for a square vessel, 1 = 1, is performed. In

this case the bifurcation points are given by

0 = + 2) 1/4 (3.1)

The potential function and wave height are again expanded in a perturbation series

in c,

*(x,y,z,t;£) - £ 1 (x,y,z,t;t) + C* 2Cx~y~z~ t) + (3*2a)
232a

n (x,z,t;E,C) = Cn 1 (x,z,tE) + C
2 

2(x'z,t;) + . . . (3*2b)

*(E,C) - ao0() + 2 () + £ 22(E) + (3.3)

However, the symbols here should not be confused with those in Section 2. Outside of the

obvious similarities, the results in Section 2 are distinct from the results contained

herein. In fact they are the complement of each other.

Substituting (3.2) and (3.3) into the governing equations and boundary conditions

(2.1) - (2.4) and equating terms proportional to like powers of £ to zero results in the

sequence of boundary value problems given in (2.7) - (2.10) but with the R. and S.

differing upon substitution.

With R, = S1 - 0, and the fact that there is a double eigenvalue with a two-

dimensional null space, the first order solution is

1 = [AOo amx cos On; + A 12 co5 xnx cos a z] sin t (3.4)

and

-15-
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0 (01[ coe am or B + a 1 2 oe B con o t .

where s0  given by (3.1) and E is chosen to be proportional to the first order wave

height. This results in a relationship between All and A 12,

A1 1
2 + A12 1 (3.6)

The relative magnitudes of All and A1 2 are, however, undertermined at this order.

The problems for j > 1 are inhomogeneous eigenvalue problems and must satisfy the

solvability condition given in Appendix II. As the nullapace at the eigenvalue is of

dimension two, there will be two solvability conditions at each order. Substituting

*11ln1 etc. into R2 and S21 and applying the solvability condition results in

"- 0 , O and

T2 (x,z,t) - 1821 + C2 1coo 2t) coo 2amx

+ (322 + C 22co 2t) coo 20,Z

+ (23 + C 23co 2t) co 2Bx

+ (24 + C24cos 2t) co 28 ;
24 2 n

+ 1B25 + C 25cos 2t) coo 1a + n )x cos (an + Bn )z

+ ( 2  + C con 2t)(co(a + B ); coe(O - Bn)z +
26 26 2 n M. n

co. IM( - n )x cou(a + n )Z]

+ (B27 + C27 Co 2t) cosa - n )x co(a - Bn )z

+ (B + C corn 2t) coo 2a x coo 20 z
28 28 m n

+ (a + C cos 2t) coo 28 coo 2anx (3.7)29 29 n n

" and

* 2 (x,y#z,t) - [A20 + A2 1 co 2a ; exp 12a)

+ A coo 2a z exp (20,Y)
22 mm

+ A 23co 20 nx exp (28 nY)

-16-
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+ A2 4 cos 20 n exp (28 Y)
24 n n

% + A2 5 coo (a + 0 )x cos( + B )z exp [r/ (a + B )y]
25 a n Is n m n

A26 (cos (a + BnlX col - Bn)Z +

+ cos( - BnX coo (am + B )zlexp (o 0
2y1

+ A27 cos( - n )- cos (a - n ) exp "V-Ia - B nlyl]sin 2t (3.8)

The coefficients A2j, B2 j, and C2j are given in Appendix III.

The most obvious effect of the double eigenvalue is the explosion of higher harmonics

at the second order. This is to be contrasted with the solutions at simple eigenvalues

where simple harmonics appear at higher order and only weakly affect the linear solution.

In the case of the double eigenvalue the mixed mode solutions also result in an increasing

complexity in the spatial structure, on a finer and finer scale, as the amplitude is

increased.

Substituting the known terms into R3  and S3 and applying the two solvability

conditions results in the bifurcation equations,

[aA 2 a A + 20 - 0 (3.9)
1 11 2 12 2 A11

2 2[a 2A 1 2 + aIA1 2  + 202 A12 0 (3.10)

which, along with the normalization

'" Al
2  

122A 2 +A - 1 (3.11)

form a set of three equations for the three unknowns All, A12 , and 02. The

coefficients a1  and a2  are given by

a 5 3(d 4 + 4  a4 B4
0 m n m n (3.12)
4 16a03 200(2002 B 200(2002 a
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.

and

10 - 3V2 '0 3(a 4 + S) (a B) 4

4 / 16a0 4 0o - ( +n

(a + Bn
14
_ _M n(3.13)

400(4002 " - S, )

The three equations (3.9) - (3.11) has the following set of solutions

Case I: A02 
= 

O, A01 = +1. a2 -al/2

Case II: A0 1 = 0, A02 = I, 02 =-ai/2

Case III: AA 02 2 .L a (a +a)/4

Case I and II are pure modes corresponding to the modes of the simple eigenvalues that

coalesce to form the double point. They share the same natural frequency and are spatially

symmetric. When the relevant parameters are substituted the amplitude correction to the
' " 1

natural frequency, 02 - ' a1 , agrees with the correction found for the simple

eigenvalues (Eqn. (2.18)). In Section 2 it was found that this expression is negative

- definite, therefore aI P 0 for all positive integers m and n. Case III involves mixed

modes. The leading terms are proportional to the sum and difference of the two

eigenfunctions. The amplitude correction to the mixed mode solutions, 02 , differ& from

the pure mode case by an amount (a, - a2 )/
4 . It has not been proved that this expression

is negative for all parameter values, but it appears, from numerical evaluation, that this

is in fact the case. It is therefore conjectured that the bifurcation of the mixed modes

is always subcritical.

Figures 6 and 7 display the bifurcation from double eigenvalues for a vessel with a

square cross-section. In Figure 6 the dashed lines correspond to the simple eigenvalues

X ' and X2 ,2 1 and the solid lines are emitted by the double point AI,2" There are

two pure modes corresponding to the upper branch (labelled p) and two mixed modes which

-18-
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U0.

0.4

0.3

0.2

0.1

0.0
0 1 2 3 4

Figure 6. Bifurcation diagram of simple and double elgenvalues
for l1.0 and m and n ranging over 1 and 2.
The dashed lines crrespond to the X I, and 22

branches. The upper branch emitted by the double eigen-
supports two pure miodes (labelled p), and the lower branch
supports two mided modes (labelled m).
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0.5 I

0.4
P

0.3 -

0.2

0.1

0.0
0 1 2 3 4

Figure 7. Bifurcation of simple and double eigenvalues for 1.0
and (m,n) ranging over 1 and 3. The dashed lines cor-
respond to the A 1 and XA, branches. The upper

branch emiitted by the double eigenvalue supports two pure
modes (labelled p), and the lower branch supports two mixed
modes (labelled in).
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share the natural frequency on the lower branch (labelled m). Figure 7 shows a similar

result with m and n ranging over I and 3. The dashed lines correspond to Xt, and

X33, and the solid lines correspond to the four branches emitted by the double point.

In Figures 8, 9, and 10 the wave fields corresponding to Figure 7 are plotted. In

Figure 8, for m - 1, n - 3, and E - .1, the pure mode, with A1 1 = 1.0 and A 12 - 0

is plotted. This corresponds to the upper branch emitted from the double eigenvalue in

Figure 7. In Figures 9 and 10, the results along the lower (mixed mode) branch emitted

from the double eigenvalue are plotted for e - .I. In Figure 9 All = and

A12 = * whereas in Figure 10 A 1 1 =2 and A 12 = - 2 The mixing of the modes

produces quite irregular solutions. Figures Ila, b, c show the time series for the left

front corner (x = z = 0) of the vessels eepicted in Figures 8, 9, and 10. The snapshots

in Figures 8, 9, and 10 correspond to the times t k, k - 0,1,2.... Figure la2w 4

corresponds to the pure mode in Figure 8 (A1 1  1 1, A12 = 0). Figure 1lb corresponds to

the mixed mode in Figure 9 (A - 11/2, A - 1/f2). Figure lc corresponds to the mixed
11 ' 12

mode in Figure 10 (A = I/r2, A - -//2). Reference to eqn. (3.4) shows that n - 0
11 12

2
when x = z = 0 and A11 - -A 1 2 . Hence the linear effects in Figure lIc are of 0(£

and proportional to cos 2t, with the nonlinear effects coning in at 0(0 ). Although the

results in Figures Ila, b, and c differ markedly, all three correspond to the same set

of basic parameters.

Examples for other mixed mode solutions in a square vessel are given in Figures 12 and

13. Figure 12 is of a mixed mode with m - 2, n 4, and Figure 13 is of a mixed mode

with m = 1, n 5.
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7 Figure 8. Spatial variation of one of the 
solutions along the p

branch in Figure 7 at 
t/2ff 3/4 ±k, k =0, 1, 2,

The parameters are 
E~=1,m = .,n =3, c=0.1,

• /11

Figure 9. Spatial variation of one 
of the solutions along the m

branch in Figure 7 at t/21 = 3/4 k, k o, 1# 2,

The parameters are .,m - 1, n 3 , =0.,

11li , and A12 = 2.

-22-a-.
'a.'..". 

. a a . * *~ . . a



7 ."

Figure 10. Spatial variation of the other solution along the m

branch in Figure 7 at t/21T - 3/4 t k, k 0 0, 1, 2,

The parameters are =l, m =l,n 
3 , c= 0.1,

A11.= iig, ana A12  -I/l2.

0.25

77 0.00

-0.25 2 3

Figure Ila. Tine series of the wave height in the left front corner

"0) of the vessel in Figure S. The parameters

are =1.., ms 1, n -3, C 0.1, A 1  I ., and

A12
-23-
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..- - ._ -. . 7 - - - : - - - .- :- - - .I,. w_ •J l - l.! ...... ......7

.. 25,

')0.00 VVV V

~~-0.25 ,
0 1 2 3 4

t/2-r
Figure llb. Time series of the wave height in the left front corner

(x = = 0) of the vessel in Figure 9. The parameters

are & = 1.,is = 1, n = 3, C 0.1, A11 =I/i2, and

A = 1/2.
12

77 0.00

-0.25'
0 2 3

t/2ir
Figure llc. Time series of the wave height in the left front corner

(x = z = 0) of the vessel in Figure 10. The parameters

are =.,rm= 1, n= 3, e 0.1, A = i/l2, and

A.= -1v2.
12
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~~ig~C 12 An xampe ofthe 
fave m on a mixed branch 

eitted

Figu e 1 ,bA a doulee eige nwalue for m =2, n' is eve an 11~l

andA~ 12  //. The fact that m isevn n

isan Au i of 12 roduces a greater degree 
of Syv*WtZY

in the mixed mode.

yigu e 1. A ex mpl wa e f eld 1 ustratin g the spatial 
c ope xty

h c a npl wave. The o t o is on a mixed branch 
eitted

by a double igenau o ,n .Pe=01

and A 11  A A12  l2
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4. The Secondary Bifurcation Points

In this section, solutions which bifurcate from the primary branches found in Section

2 are sought. Therefore a perturbation is added to the knowr primary branch solution,

= * +$ (4.1a)

n= eh + ri (4.1b)

The expressions (4.1) are substituted into the governing set of equations and boundary

conditions (2.1) - (2.4) and linearized. The equations independent of * and n were

analyzed in Section 2. The linear problem for 4 and n is

2 22
D (4.2)
ax

2  y 2 
+  2

2 0  at x = 1/2  (4.3a)
ax

+ 0 as y +- (4.3b)
ay

+ 0 at z= 1/ 2  (4.3c)
az

and on y = *h(x,z,t),

-0 *r ah 3__

at axa ax ax

+ *2 [L " 
+ 
"3h j - = 0  (4.4)

+£ ax ax az az ay

and

+' at * _as +~ _ +&2a_?s +njj(.5
at ax ax a e. a 4 az ax 45

This is a linear differential eigenvlue problem with known nonconstant coefficients.

However, the specific value of c where the secondary bifurcation takes place is

* sought. Therefore e is the eigenvalue. Since c appears non-linearly, it is a non-

linear, in the parameter, eigenvalue problem. This does not pose serious complications as

methods for the solution of this type of problem are known [9J. However, there is the
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further complication that c* is responsible for the size of the domain. The qualitative

shape of the domain is known since h(x,z,t) is a known function, but the precise amount

of h(x,z,t) is the unknown eigenvalue. This is to be contrasted with the original* -
eigenvalue problem in Section 2 where W was the eigenvalue, * was a variable

parameter, and the shape of the free surface, and hence the domain, was an unknown

function.

To solve this eigenvalue problem, the conjecture of Bauer, Keller, and Reiss, that the

secondary bifurcation occurs in the neighborhood of multiple eigenvalues, is used.

For brevity, the analysis is undertaken in the neighborhood of 1 = (a square

cross-section). It is expected that a similar analysis will hold in the neighborhood of

other values of & at which double eigenvalues occur.

It was shown in Section 3 that for I - 1 there is a double eigenvalue for every pair

(m,n) such that m * n. At the double eigenvalue the bifurcation point corresponds to

0 - W(m2 + n
2 ) 1/2 (4.6)

for any (m,n) such that m * n, and in the neighborhood of I - this double eigenvalue

splits into two primary branches

A (m2 + 
2
n
2
) 1

/2  (4.7)

m,n

and

A, w(n2 + 2m2 1/2 (4.8)n ,m

The neighborhood of C = 1 is measured by the small parameter j, defined by
2

-1+ where T = sign (C-i) - ± 1 (4.9)

Following the conjecture of Bauer, Keller, and Reiss that the secondary bifurcation

disappears at the double eignvalue, the point £ on the primary brnches where secondary

bF.rcation takes place is expressed as

Cu) - b11 + bIJp + (4.10)
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with (4.9) and (4.10) the solutions on the primary branch, derived in Section 2, can be re-

expressed in terms of v,

0 =0 + *-+ (4.11a)

h = h0 + lih I + ( • (4.11b)

+ - + w 2  + . . . (4.12)

The analysis is undertaken separately on the two branches, A and X after
men nero

splitting. The necessary details for the analysis along the branch A is given, anda, n

the result only will be stated for the A branch. Along the primary branchn,.

corresponding to A
m,n

T2
Xn X0 [I+ n tjn 2 +Am~ "A 1  2),02 +.• .j (4.13)
M,n 2A

where A is given in equation (4.6). The terms in the expansion (4.12) are given by
0

0= A0 2 (4.14a)

and

Ton2 -W04 3(m4 + On4W + bo2
2 3 0c~-- 32wa

4w0  32)0

4 4

+) 00(0+ 2 ] (4.14b)
+0 4wo(2 wo 4wo(2wo

and the terms in the wave height expansion (4.11b) are given by

h = coo a x cos Bnz sin t (4.15a)

h Dl + D co 2t) coo 2a x + (D + D cos 2t) cos 20nz
M 1 3 2 1 4 n

+ (D15 + D16 cos 2t) cos 2an x co 2S z (4.15b)
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where a m "m, Bn -n, x-x+1/2 , z +/2, and

bo
D 2 (4. 16a)

2
8W

-b (w b 2'.' b0 04 + B 2 ) b0Bn

- - (4.16b)
12 8w0

2  
2( m - 2w 0

b0 n
2

D1 . On (4. 16c)

43 2 2

-b(04 0
4 + am 

2  bo0 C& m 2

D14 2 (4.16d)

8 0 n 0 20

D15 , b0 W0
2 /8 (4.16e)

bD 16 b 0 W00 2 /8 (4.16f)

and a similar expression is found for 4 in (4.11a). Substituting the expressions (4.9),

(4.10), (4.11) into the eigenvalue problem (4.2) - (4.5) and postulating that

0 - .t*1 + + 2 + (4.17a)

n =Ur + 112 2 + • (4.17b)

expanding the free surface boundary conditions in a Taylor series, and equating terms

proportional to like powers of u to zero, results in the sequence of problems,

+ - + Tj (4.18)
3x2  

ay
2  z

0 at x - +1/2 (4.19a)

ax

- 0 as y + (4.19b)
ay

0 at z - ±1/2 (4.19c)
3z
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..-..

+ =Rj (4.20)
0 at

""0 J s (4.21)

for j = 1, 2,.

In addition to the obvious differences between the Rj and Sj appearing here and

those in the previous sets, there is also the addition of the inhomogeneous term in the

governing equation (4.18). However T, -0, T2  -0, and T3  1 T -.

Noting that R, - = T, = 0, and the fact that w0  corresponds to a double

* eigenvalue, the first order solution is

n (x,z,t) [A1cos a x coo Bnz + A coo B x cos a z] (4.22)~ ~ ) 1 1  in n 12 n in

and
2

*(X,y,z,t) = 0 [A 1 1 cos a coo BnZ + A12 cos B x coo a z]e cos t (4.23)
0n m

For definitness in the normalization, the following relation is taken between All

and A12 ,

A 2 + A2 2 = (4.24)

11 1

- with the relative values of A1 1  and A12  to be determined at higher order.

Before proceeding to higher order, it is noted that the homogeneous problem has a

double eigenvalue. Therefore two solvability conditions are needed at each order. The

general form of the solvability condition, given in Appendix II, is used. Substitution of

% the known solutions into R2  and S2  the second order solution is found to be,

n 2 (x,z,t) = C2 0b0 A 1cos 2t

+ [B21 + C2 1cos 2t] b0A 11 co 2a x

+ (a + C22cos 2t] b A11cos 202 220 11 n

+ (B + C2cos 2t] b0A cos 2ax cos 2BZ
23 23 0 11 o n
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+ [B24 + C 24co 2t] b 0 A1 2 Cos (a - Bn) cos (a -Is )z

+ [B25 + C2 5 cos 2t] b 0 A1 2 cos (a + Bn) coo (a + n

+ C 26b0A2cos 2t [coo (a - Bn Cos (a m + n

+ coo (aa + n )x Coe (a - Bn )Z (4.25)

and

(x,y,z,t) A b0At + A b A sin 2t

*2(xy t A00 0 11 20 0 11

2amy 2Bny
+ b0Asin 2t (A2 1e coo 2 22e  cos 2 Bnz

2wa0y 2- o 6Z
+ 2

e
cosaxo2]

i" + b0& 12sin 2t[A24cos (am - B n) coo (a - Bn) exp[/ Ia% - BnIY)

+ A 2co (a + n )x co Ca + B ); exp [/ (a + B )y

+ A2cosla m - Bnlx corn (a+ Bn); exp [(/2 w02 y]

+ A 26cos(a + n ) cos a -n 1; exp W / 0 2 y] (4.26)

The coefficients A2j, B2j, and C2 j are given in Appendix IV. The term C2 0b0 A11 cos 2t

in the expression for n 2 in (4.25) is indicative of non-conservation of mass.

Conservation of mass requires that

1/2 1/2

f f n (x,z,t)dxdz = 0 (4.27)

-1/2 -1/2

which is not satisfied by the term mentioned. However, the solvability condition, at the

next order requires that the product b0A11  is always zero, which alleviates this problem.

Substitution of the known solutions and application of the general solvability

condition at third order results in the bifurcation equations,
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b -o 1 (4.28)

(OL2 ~2 )Tr=0(.9
.a2w 0 4 a 3 b0 

2 ]A 12 (.9

which along with the normalizaiton condition

A 2+ A 2 i (4.30)
11 12

form a set of three equations for the three unknowns All, A12, and bo The term a3 is

given by

54 4 4 2
5W 3(a +8 3w 0 u + )

a3 32+ 8 4 +r~ 162 1. n am+Od

+ UB 2 '0. (r + 0.)]

2 V'2 2 2

2w 0 2(2w 0 2 
8n 2w 0 2(2w 0 2 U)

7~2 a m j( M +( .+0nM o 8.n) (4.31)

326i [4w0
2 _ -~j _n' 0 34w 0  /2(a Sn))

It has not been proved that this expression, a3, is positive definite but numerical

evaluation, with nm,n ranging from 1 to 10, showed this to be the case. The solutions

to (4.28) - (4.30) are

Case 1: bo - 0, All 1, A12 =0 (4.32)

_a2 2)

Case 11: bo I A1  0, A 2  1 (4.33)
2a 3 0
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The solution is (4.32) is of little interest. It merely points out that the basic solution

bifurcates from the primary branch. In (4.33) the solution for the secondary bifurcation

on branch )n is given. The t sign in (4.33) shows that the bifurcation takes place
m n

in both the upper and lower half planes (C c). The jump to the A12 * 0 solution is

often referred to as mode jumping because the solution acquired on the secondary branch is

qualitatively different from that on the primary branch. The radical in (4.33), with the

conjecture that a3 > 0, requires that (am - )T < 0 for secondary bifurcation to occur

on branch Amn"

A similar analysis, to that given for the X. branch, results in the following

bifurcation equations for the X. branch,

2 2

-n a3b 0 ]All =0 (4.34)

bo2
2

]A1

b
2
A 0 (4.35)

0 12

which along with (4.30) provides three equations for the three unknowns. For convenience,

define Cm,n to be the point of secondary bifurcation on the Xm, n  branch and £n,m to

be the point of secondary bifurcation on the Xn branch, where" n ,m

E (m,n(i) = b m, n + O(1 2 ) (4.36)

C n,m) b nmU + O(W
2
) (4.37)

Equation (4.33) and (4.34) show that (retaining only the positive branch for brevity),

F 2 4-2-T (4.38)
inn 4

m 30

(Q2 -n2)

b = *2-O (4.39)
n,m 2a w.4)

The secondary bifurcation phenomena may be summarized as follows.
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When P =0 and 1 = there is a double eigenvalue A0  (a + 2 for every
0 m n / o vr

!2

pair (m,n) such that m n. As & is varied from 1 = by an amount = +/2T

the double bifurcation point splits into two primary bifurcation points,

2, 2 2 1/20a
m,n ( m +  n2) (4-40a)

= (8n2 + 2 a 2)1/2 (4.40b)

n,m n m

According to (4.36) - (4.39) a secondary bifurcation tkes place on one - and only one at a

time - branch. Noting that T = sign ( - 1) and that the radical in (4.38) and (4.39)

must be positive for secondary bifurcation, the branch on which the secondary bifurcation

takes place is

If E > 1 and a > a then on X (4.41a)m n nwm

If E > 1 and a < 8 then on X (4.41b)
m n m,n

If < 1 and a >8 then on X (4.41c)
m n m,n

If < 1 and a <8 then on X (4.41d)

m n n,m

These results suggest the following. As departs from & = 1, the split primary

biforcation points move away from the double point. When > 1 they both move to the

right, and when & < 1 they both move to the left. However, in all four cases (4.41), the

secondary bifurcation takes place on the branch which is emitted, after splitting, by the

largest, in magnitude, of the two bifurcation points, regardless of the sign of T.

Based on physical and numerical grounds the size of the E neighborhood, in which

secondary bifurcation may take place, can be estimated. Schwartz and Whitney [10], in

their analysis of two-dimensional standing waves, in a fluid of infinite depth, estimated

the highest wave to occur at c - 0.2 (the scaling here is different, dividing their

result by w provides congruence with this work). This two-dimensional result may be used

as an estimate of the relevant three-dimensional parameter. Numerical evaluation of the

expression for b0  gives a value of b0  0.18 for m = 1, n = 2, and for all

°0
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combinations of m,n with m,n ranging over I to 10, the value of b0  is of smaller

magnitude. This suggests an upper bound for p of p 1. Obviously the perturbation

scheme is valid only as u - 0. But the implication is that the neighborhood around

- I in which secondary bifurcation takes place may be substantial. Therefore the range

of aspect ratios at which secondary bifurcation may take place, at some value of the wave

amplitude, is large enough that the irregular waves produced on these branches should occur

quite often in vessels of rectangular cross-section. In the next section the solutions

along the secondary branches will be found.
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5. The Solution Alon2 the Secondary Branch

After the splitting process, a secondary bifurcation point occurs on one of the two

resulting primary branches. By expanding in the neighborhood of this point, an asymptotic

representation of the solution along the secondary branch may be found. Assume the

parameters are such that the secondary bifurcation point occurs on the X branch. A

similar expansion can be performed if the secondary bifurcation point occurs on the Xnem

branch. The governing equations and boundary conditions are given in expressions (2.1) -

(2.4). The variables have the following form,

CO + (5. 1a)

n = ch + n (5.1b)

W W + Q (5.1c)

where *, h, and w correspond to solutions on the primary branch and *, n, and a

correspond to solutions on the secondary branch. The primary branch solutions were found

in section 2. The problem for *, i, and n is given by

a, a~ 232(5.*2a)
ax

2  ay
2  z2

a 0 at x = 1/2 (5.2b)

as y
t
- (5.2c)

(0t - at = -/ (5. 2d)

and on y = ch + n

+ rt - + ja 4c + ) + - -Wt ay -5, X z z ax ax z 5Z

d(S.3a)

, and

p.
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-. (W, + 9) -+ n + Cf{O + a0;v + &2 +0 3f + $V

-C(W + 11 h - -- 70. (5.3b)

The free surface boundary conditions satisfied by 0 and h are subtracted from (5.3a)

and (5.3b) after expansion of these conditions in Taylor series about y = 0. A small

parameter, v, is defined as a measure of the distance from the secondary bifurcation

point. The known primary branch solutions are

c bm, n + 0012 ) (5.4a)

0 " 0 + 1 I + 0 (Ij
2 ) (5.4b)

h = h 0 + uh1 + O(0 2 ) (5.4c)

W = 0 + 2 w2 + O('j 3 ) (5.4d)

with bm,n given in (4.38), and the terms in (5.4c) and (5.4d) are given in (4.14a)

through (4.15b). The unknown solutions along the secondary branch are postulated to have

the following form

0 * 1 + V2 f2 + • (5.5a)

T)= VY1 + V2 + (5.5b)

= VP + V2 2 + " (5.5c)

Substituting (5.4) - (5.5) into the governing equations and boundary conditions, (5.2) and

(5.3), expanding the free surface boundary conditions in a Taylor series about the

equilibrium solution, and equating terms proportional to like powers of v to zero,

results in a sequence of boundary value problems for the *i' Tli' and Qi" However, each
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II

of these boundary value problems is also a function of U. Therefore the functions

i' nil and Q. are expanded in terms proportional to powers of 1j,

2
i= i + i2 + (5.6)

2 2

i Q io 
+  Qii + 1 2i2 + (5.8)

The substitution of these expressions results in an additional subdivision of boundary

value problems. The analysis, although straightforward, is lengthy and the details will

not be presented.

The first order (in v) problem results in a , 0, and

1= i11 + 2 12 + 0(1
3
) (5.9)

2 3
n- = 11 + P n12 + O(P ) (5.10)

where
2

cos nxcoscaze Cos t (5.11)11O 0coan i

= cos cos aiz sin t (5.12)

where the parameters are as previously defined, and

*12= A 12 1cos (a - B n cos (a - B )i exprvja- Bnlysin 2t

+ A 12 2Cos (am + n )x cos(lm + n )Z exp[4l(a m + n)y]sin 2t

+ A 123cos (am - Bn)X cos( m + n )Z exp[ / 0
2
y]sin 2t

+ A123 cos(am + n )x cos(am - n )Z exp[V w0
2
y]sin 2t (5.13)

and

n12 = [B121 + C121 cos 2t] cos (a -B n)x cos (am -n )z
+ [B12 2 + C12 2 co 2t] cos (ain + n 

)
x cos ( nm + n ) z

+ [B123 + C123 cos 2t] cos (ai - Bn)x coo (am + n )z

+ [B123 + C123 cos 2t) cos (am + n )x cos (am - m )z (5.14)

and the coefficients in *12 and n12 are given in Appendix V.
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The problem of O(v 2 yields the following results,

S) 9 + PSI + P2 a + O(P 
3)(.5

2 0 21 22

=2 02 + P 2 22 + 0(U3 ) (.6

T ~2 2 + U 2 r22 + 0(U 3 ) (5.17)

where it has been found that fl 20 a2 - 0,

5 2 2
(28 -94) ' 0  3 a M

22 (4 - 42) 32 16o3

+ (a + 1 I + 8w- - 8- )4 (5.18)
8w(4 WO 2 l 2a m n] ao[4wo _2 , / m( +8O)1

1 p2 0, and

2 A2 1 coo 28 e sin 2t

2* y
-- m

+ Aro 22mcoo 2 %zel sin 2t

S 2w0 y
+ A2 2  coo n x coo 2a ze sin 2t (5.19)

223 e ) m

and

2 (2221 + C22 1 cos 2t) cos 2I x

+ (B 22+C cos 2t) cosn 2az

222-2 2 a

+ (A223 +c 223 cos 2t) cos 28 x co 2a Z (5.20)

I! 22 (223 +  223 o " o n;

The coefficients in (5.19) and (5.20) are also given Appendix V.

The result (5.18) provides the expression for the frequency along the secondary

branch. In the limit as v + 0 and u + 0 the complete expression for the frequency is

S +  2 2 22 3 3 (5.21)

S 0  w2 + v n 2 2 +0(U 'v)(.1

-39-

...........-. . .. . . . . . . . .



Since n 22  is proportional to quadratic terms, the sign of n22 determines whether the

bifurcation from the secondary bifurcation points is subcritical or supercritical. It has

not been proved, but numerical evaluation of the expression for Q2 2  suggests that it is

negative for all values of m and n. Therefore, as the solution moves from the primary

to the secondary branch the frequency of oscillation decreases.

An example of this secondary bifurcation phenomena is given in Figure 14. In this

particular example m - 2 and n - 1. The double bifurcation point, A /2. 2.65, is
k0

*. - given by the dashed line in the figure. This point is split by choosing u - . With
3

7
T < 0 the aspect ratio after splitting is - . Therefore the two primary

bifurcation points become A 21 - 2.6 and X1,2 2.4. For these parameters b0 - 0.18.

Therefore the secondary bifurcation takes place at c - 0.12, on the X 2,1 branch, and

from this point the subcritical secondary branches are emitted.

The nature of the solutions on the secondary branch can be illustrated by the time

series, for the wave height in the left front corner of the tank = - 0), given in

"" Figures 15a and 15b. The result corresponds to that given in Figure 14. In Figure 15a

the wave height on the primary branch at the secondary bifurcation point (c - .12,

v = 0, m = 2, n = 1) is shown. In Figure 15b the solution is advanced along the

secondary branch to V = 0.08.

The spatial nature of the solution on the secondary branches will be similar to the

result found for the mixed modes emitted by the double eigenvalues. However a greater

degree of complexity may be expected here due to the varying amount (through v) of the

"other" mode which is acquired on the secondary branch.

F-
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0.3

0.1
%4

0.0
2.0 2.2 2.4 2.6 2.8 3.0

Figure 14. A bifurcation diagram with the occurrence of secondary
bifurcation for mi - 2 and n - 1. When & - 1 the
pure branch emitted by the double eigenvalue is given
by the dashed line. When & is perturbed to & - 7/9
the double eigenvalue splits and secondary bifurcation

* occurs on the A branch.
2 1
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0.25

77) 0.00 r r

-0.25 I

0 1 2 3 4

t/2 r

Figure 15a. Times series f or the wave height corresponding to
Figure 14. The parameters are =7/9, m - 2, n =1,

C= 0.12, and V = 0. This is the solution on the
primary branch near the secondary bifurcation point.

0.25

7) 0.00

-0.251I
0 1 2 3 4

t/2 ir
Figure 15b. Time series for the wave height corresponding to Figure 14.

The parameters are E~=7/9, m - 2, n = 1, c 0.12, and
v= 0.08. This is a solution on the secondary branch.
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6. Remarks

It has been formally shown that multiple and secondary bifurcation of the wave fields

occurs in partially filled vessels of rectangular cross section when the depth of the
I

fluid is infinite. The many wave solutions depicted in this paper will likely occur often

in nature. Unlike the buckling of plates and shells, for example, where the minimum

eigenvalue is the most important, in the "sloshing" problem the band of frequencies, at

which a vessel containing fluid might be excited, is relevant. Consider, for example, an

ocean liner carrying liquid cargo steaming across the north Atlantic. The ship, and hence

the cargo tanks, will be subjected to ocean waves containing a significant band of

frequencies and amplitudes. It is likely, in fact, that even the most casual observer of

waves in partially filled vessels of rectangular cross-section has witnessed wave fields

of the type shown herein.

What about vessels with cross-sections other than rectangular? A basin with a

triangular cross-section, for example, will have a multiple (triple?) eigenvalue when it

is equilateral. Similarily, one can imagine that a star-shaped cross-section will also

produce interesting possibilities.

A basin with a circular cross-section, such as a coffee cup, is however different.

There is no relevant parameter such as an aspect ratio. An analogy can be found in the

work of Cheo and Reiss [11] on the secondary buckling of circular plates. Their analysis

showed that a different type of secondary bifurcation occurs in the buckling of plates

with circular cross-section. In their case, the primary bifurcation was to an

axisymmetric state, from which a secondary bifurcation to an asymmetric state was found.

In the standing wave problem Mack (12] has found the primary bifurcation points to

axisymmetric states for standing waves in a circular basin. It is possible that a

secondary bifurcation from these primary states to asymmetric states may take place.
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Appendix I

The nonlinear boundary conditions at the free surface, y - n (x,z,t), are

*An +itA2n + C2 ?At  a t -at ax ax 3z z a 3y

+" )A + t)2 + t22 12] + n - 0 (1.2)
at 2 ax ay az

If each of the unknown variables has a power series expansion in the amplitude

S(2 .3a)
f = 0$1 + C f2 +

q* = £f1 + £2n2 + (1.3b)

2
a = 0 + cc I + E:2o 2 + •••(1.3c)

After expansion of (I.1) and (1.2) about y = 0, and substitution of (1.3), the following

sequence of boundary conditions results

aot - -R (1.4)

a, + n S = s: (1.5)

where

R -0 (1.6)
1

an 1  an a, an a# a (I.)

' :a2 an I n I a# 2 2 an I a#,3 1 W- 2 at a x a x a z 1z

ana a a 2  2 a, 1

an2 a,1  2 an2 a 1  
2

ax ix iz iz 
+ 

ni 2 
+ 2 y2

3- y 2

aa 2 ' 2a 0 anl a2I 2 anl a2]
1 2 ,- n 1  2 an ,,
21 "1  3 a Nx- ajxay + C z j Y j-I(.9aya

°%%
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S 1 . 0 (1.9)

2

S2 - 0"1 - a n -a (1. 10)
2 " 1 at 2 V 1 l yat

a ,2  a 1  *1 a*2  a 1 a,2  2 31 a, 2
$3 " 1 Tt- 02 Tt--T 1- - Ty" y' - Tz- az

a 2 ,2 2 f

0 1 ay3 - O ayat -1-01 11
22 31

a1 a2,1 _31 a2A 2 a 1 a24. 1 2 a #1
"y -a. + Ty y2 + 3yz 2 -2- 00 (.1-

Appendix II

Inhomogeneous eigenvalue problems of the following type arise in the analysis

2 2 220 + a 0 + 2 a 2,Z co

ax a az f 1 (x,y,z)cos t (11.1)

at xTti 2 at2x 22

0 a y11.3)

-. 0 at = , 1/2 (11.4)

30 2 20(11.5)
y +00 - = f 2 (xz)cos t

Other inhomogeneous terms with higher multiples of t occur and for them a similar

analysis holds. The term proportional to cost is the most important. Define

*(x,yz,t) = *(x,y,z)cos t. then 4 satisfies

+2 a2 + E2 2 f(X ' yz) f11.6)
x 2  

2  3 2 1

0 at x- '/ 2  11.7)

+ 0 as y+- +(1.8)-;YY
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z 0 at z = j 1/2 (11.9)

f- a02 f2 (x,z) (II.10)

The set (11.6) - (11.10) without the forcing terms is self adjoint. Define a function

which satisfies (11.6) - (I1.10) with fl = f2 = 0, then multiplying (A.6) by *,

integrating over the domain, and using Green's theorem, results in the necessary condition

for solvability

1/2 0 1/2 1/2 V

f f Jf *(X,y,z)f1 (x,y,z)dxdydz f f *(x,0,Z)f 2(x,z)dxdz (11.11)

Appendix III

In this appendix the coefficients used in equations (3.7) and (3.8) for the analysis

at double eigenvalues are defined,

2 20

A2 0  - (A12 
+ 

A2
20 8 11 12

8n2 A 1 2

A21 = O
1 40(a - 2o02)

z' B2A 2

A 2 n 12• " A2 =

22 400 (am - 2002

am A122A23 40(n_202)

A 4a 0 0
n - 2a0022

A24 2
4oy 0$ 2a~ 0

A11 A12 (a m n
A 225 2a 0((a + n ) - 402
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A IA 1290

I A =

A26 2(n - 4)

2

A A 2a
A27 20Ia -1 02

0 m Bcl I-On'

2
m2 A 12 A 1 (a4+ 2

21 S 02 21 02 902

22 A 2

am 12 C12 (a4 +02

-22 2 c22 ' -2o OA2 2  -7-2 0 n
sooo

B A 2A 12 4 2

A -- (a + on

-2 1o2 C2 43  - 2 4 so 2 0

B A112 2 aA A1 1 3 %n

"so

2A2

B'A 1  
i11 4( 2

B -A A 2a A A
24 2 24 02420 1

800 8002

A1 2 2 . A A1 2 ( 4 
2

1112 2 ---02 4 .n

2 522a 0 C 22 2 0A 2  0 0

28 1

• . 23 2C23 200A 3 2

B 200 C 0-2A -- 0 A

26 -A 1  269 6901 12

22 
12  8 12

B2 -2a-B 
C24 -200&A "- - (0 

z 2

S800 00

A1 2 i~
1  2 20 2 -. -'"1o4 -2 l )

200 200

S02 02

00 2

'- 29 " 12 8 (29 12" & 9
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Appendix IV

In this appendix the coefficients used in equations (4.25) and (4.26) for the

analysis of the secondary bifurcation, are defined. They are not to be confused with

those in Appendix III.

-0
A0 0 =

A -7w
20 32 0

=- (a 2 - 718n2)
m 2

A21 2
16w 0Ca -2w0

02 0
- (2 7 2

n m
22 16w - 2

O n 0

A 2 3 T6-

(3w0 + 8S )
m mn

A 2 4 = 8 , - - 2

8W (21a - 81 4aw0

(3w - So )
m unA 25 =801,1 + n -4,021

S2=W (fi(m + )-4w2
O m n 0

3w 
0

A 2 6 = 3-.2 8 ( ,/2 4 )

W0
2

20 16

2 2 2 2

0

2 a 2) 3a

B2 2 = 2 C22 -2 wA 22 2

8w 0  SW0
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B 2 3  a " 23 " -

B 24 4 4 0  2 -2w0 0

a m an 0 4 " a m nB ' C '- 2wA25 4 C25 0 25 42

2

C 2 6 (2 1 0

Appendix V

In this appendix the coefficients corresponding to the solutions along the secondary

branches are given. They are used in equations (5.13), (5.14), (5.19), and (5.20).

-b 0 olt.m + Bn2

"121 2 2(4( . . - el]

2" -bo(4  - O )2

0Oam nA
122 2 w 02 - (la m + n)]

"b0 w0

A 123 = bw

2(4 - 1

( 0 -m Bn 2 3 2 b Bn
B 12 1  89w 2 121 0 121 8 0 4 0 2

0 0bo(a + w )2 3 b

B123 = -8 C 123 "2w0-A123 b 0 -0
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22 
2

A214w 0(2w 0 2B

2
am

A 222 4w 0 (2w 
0 - a)

A =

223 4

B 8 2  B 2

B22 1  C21 n 2

22 2 221 -20A221 8 2
8w0  Sw

0 =0

2 2
a a

B MC =2W A +
222 8w2 222 0 222 8w2

S 0  8 0

2 2
w~w 0

223 -223 8-3
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